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We present a grid-free numerical method for solving two-dimensional, inviscid, incom- 

pressible flow problems with small density variations. The method, an extension of the vortex 
method, is based on a discretization of the equations written in the vorticity-stream for- 

mulation. The method is tested on an exact solution and is found to be both stable and 
accurate. An application to the motion of a two-dimensional line thermal is also presented. 
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INTRODUCTION 

In the presence of an external force, density variations can cause fluid motion. 
For example, in thermal convection the effect of gravity is to cause warm, less 
dense, fluid to rise when surrounded by cool, more dense, fluid. In the vorticity for- 
mulation of the equations of motion one finds an explanation for this phenomenon. 
The effect of a force acting on density variations is to cause the growth of vorticity 
in the interior of the fluid. This vorticity then induces the fluid to move. The 
numerical method we present in this paper is based upon this observation. 
Specifically, we approximate flows induced by the action of external forces on 
sity variations by calculating the evolution of the vorticity of the fluid. 

We assume that the flow is two dimensional, incompressible, inviscid, and that 
the density variations are small. (We make the Boussinesq approximation 
134, 361.) This latter assumption is not a severe restriction since it is often satisfied 
in many important applications, e.g., thermal convection. By making this 
assumption the approximation of the equations is much easier to accomplish. 
method is a discretization of the vorticity formulation of the equations of motion, 
and hence the resulting algorithm can be considered a vortex method. The underly- 
ing approximation techniques are based on the vortex method for incompressible 
flows as implemented by Chorin [ 121 and analyzed by Hald [23] and Beale and 
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Majda [6,7]. (For a review of vortex methods see Leonard [27] or Chorin [14].) 
It is a Lagrangian or grid-free method and uses an approximation which is com- 
posed of a sum of vortices of finite core size or vortex “blobs.” Since the vorticity 
growth is caused by the presence of density gradients, it is necessary to calculate 
their evolution in time. Usually this is done by calculating the evolution of the den- 
sity and numerically differentiating the result. Early tests proved this approach to 
be somewhat unsatisfactory rl], so we consider the density derivatives as primitive 
variables and calculate a solution to ,an equation which describes their evolution. 
We mention that many of the ideas contained in the convergence proofs for three- 
dimensional vortex methods [3, 61 can be used with a little modification to obtain 
a convergence proof for the method presented here [ 11. 

Previous work using the vorticity formulation to study motions induced by den- 
sity variations has mainly concentrated on the problem of calculating the motion of 
an interface which separates two fluids of different densities. In this case the vor- 
ticity is confined to the interface and the problem reduces to one of calculating the 
motion of a vortex sheet whose strength changes in time [9]. Numerical 
experiments on this problem have been carried out by Baker et al. [4,5], Meng 
and Thompson [29], and others. The method that we present is derived under dif- 
ferent assumptions, namely, that the density is continuously varying. Our method is 
therefore applicable to problems that do not have sharply defined interfaces. (One 
application might be the calculation of the motion of a continuously stratified 
fluid.) 

However, there is a natural extension of our method to flows that have density 
discontinuities. The resulting method is similar to the method presented by Meng 
and Thompson [29]. Both methods use essentially the same formula for the growth 
of vorticity. The methods differ in the way in which the normals to the interface 
(necessary to calculate the growth of vorticity) are approximated. Meng and 
Thompson calculate the normals by finding a normal to a curve that passes 
through a set of points representing the interface. In our method we approximate 
the solution of an equation that describes the evolution of the normals to the inter- 
face. For comparison purposes we consider the problem of calculating the motion 
of a two-dimensional thermal. Using our method on this problem we are able to 
calculate the roll-up of the interface in a numerically consistent manner. This is an 
improvement on the results that were obtained by Meng and Thompson, The com- 
putational results are rather startling, and we find evidence that the magnitude of 
the vorticity of the solution and the length of the interface become infinite in finite 
time. 

In the implementation of our method one needs to specify the initial interparticle 
spacing, h, and a value of the smoothing parameter 6 (roughly equal to the core 
radius of the “blobs”). As is typical of this type of vortex method, improvement in 
accuracy is obtained by letting h 3 0 and 6 + 0 simultaneously. (For smooth 
solutions this follows from the convergence theory [ 11, and for non-smooth 
solutions one hopes this is true.) It was found that the manner in which the limit 
h -+ 0 and 6 + 0 was taken had an important effect on the computational results. If 
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h was reduced too rapidly relative to 6 then the calculations became i~consi§t~~t 
upon further refinement. In the two-dimensional thermal problem the effect was to 
cause the interface of the thermal to “tangle.” To overcome this difficulty we for- 
mulated an empirical procedure for determining the proper approach to the limit. 
This procedure was very successful, and it may be of value in other vortex 
calculations which suffer from the same type of problem. 

In Section 1 we consider a simple model problem to illustrate some of the 
features of the numerical approximations used in our scheme. Section 2 contains a 
presentation of the equations that we use to describe the motion of a fluid wi 
small density variations. As mentioned earlier, we treat the density derivatives 
primative variables and in this section we derive equations for them and give a for- 
mula which can be used to reconstruct the density from a solution of such 
equations. We prove that the density constructed in such a fashion is equivalent to 
that obtained by solving the continuity equation. In Section 3 we discretize the 
equations of motion to derive our numerical scheme. We present in Section 4 an 
exact solution to the equations of motion and use this solution to verify the 
accuracy and stability of the method. In Section 5 we apply our method to calculate 
the motion of a two-dimensional thermal. The problem involves the calculation of 
an interface and we describe how to adapt the method to deal with this com- 
plication. We describe our empirical procedure for choosing the two parameters 
and 6, and present the computational results obtained with these choices. 

1. MODEL PROBLEM 

Two important aspects of our numerical scheme are that it is Lagrangian and it 
uses ‘blob”-type approximation. To illustrate some of the features of this type of 
numerical approximation we consider a Lagrangian method for calculating the 
motion of a quantity being transported by an incompressible flow. This problem is 
useful not only for demonstrating some features of our method but also for 
demonstrating some features of vortex methods in general. 

Let u(x, t) = (ul(x, t), ZQ(X, t)) be a given velocity field defined on R2 such that 
div u = 0. Let f (x, t) be some quantity passively transported by the velocity field 
i.e., f satisfies the partial differential equation 

af %+u.gradf=O 

f(x, O)=f&h (1.2) 

We assume that the support of f0 E 52, Sz a bounded set in R2. The problem is to 
calculate an approximation to f (x, t) for times t > 0. 
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Our starting point is to write (1.1) and (1.2) in Lagrangian form as 

Wa, t) - = 4X(@, t), t), 
dt 

where a = (a,, a2) E R’. The solution to (1.3), X(M, t), is the trajectory of a fluid par- 
ticle which at time t = 0 is located at the point CI. Equation (1.4) describes the 
evolution off along the particle trajectory x(tx, t). In particular, (1.4) expresses the 
fact that the quantity f does not change along particle paths. For a discussion of 
the equivalence of (l.l)-(1.2) with (1.3)-(1.4), see [18]. 

We approximate the solutions to (1.1) and (1.2) by constructing discrete 
approximations to Eqs. (1.3) and (1.4). Let Ah denote the set of nodes of a grid of 
mesh width h, and define Oh as the intersection of Q with Ah. The discrete 
approximation to (1.3) and (1.4) is obtained by computing the solution to the set of 
ordinary differential equations 

W jh, t) 
dt = u(x(jh, t), t), 

df(x( $3 t ) ,  t )  = o 

dt ’ 

x(jh, 0)= jh 

f(N.h O), 0) =fo(jh) 

for alljh=(j,h, j2h)eQh. 
Thus, the computed approximation to f(x, t) for t > 0 consists of the values of 

the function f at the set of points {x( jh, t) ( jh E @}. 
What is attractive about such a scheme is that the values of the function fat the 

points x(jh, t) are not smoothed by this process. It is for this reason that we are 
justified in calling the method non-diffusive. We are computing the exact solution at 
the points x(jh, t); hence the method is similar to the Random Choice Method 
[13, 221 where a solution is constructed as a superposition of locally exact 
solutions. We expect that the most prominent feature of the Random Choice 
Method, the ability to compute accurately the evolution of sharp fluid discon- 
tinuities, will also be a feature of this method. This property is not shared by con- 
ventional finite difference schemes for solving (1.1) and (1.2). 

One unattractive feature of such a scheme is the difficulty in approximating the 
function f(x, t) at points other than the particle trajectories, {x(jh, t) 1 jh E Qh}, or 
approximating differential and integral operators applied to J: This difficulty arises 
because the points at which the approximate solution is computed, x(jh, t), are not 
necessarily distributed uniformly in space. Interpolation or differentiation formulas 
tend to be computationally unstable or of low accuracy. An approximation 
procedure that has proven successful in overcoming this difficulty is that which is 
implicitly used in the vortex method. We now describe this approximation scheme. 
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For this approximation we need to define a class of approximate delta functions 
which we denote by MLap. This class of functions is introduced in [3] and is similar 
to the class of functions FeSLTp considered by Beale and Majda in [7], and to Cot- 
tet’s class Cb in [ 171. 

DEFINITION. The class MLsp is the collection of functions $: R* -+ R which satisfy 
all of the following conditions: 

(i) SRz $(x) dx = 1; 

(ii) iRz Y$(x) dx =O, for all multi-indices 01 such that 1~ jo(( <p-- 1, 
.b lxlp I$G)l dx < a; 

(iii) II/ E P(R*); 

(iv) /xI”+‘~’ l@$(x)l G C for some C, and all /? s.t. ipi <L; 

(v) lxlP+4 I@(x)1 <C for some constant C. 

Examples of functions in this class will be given in Section 4. (See also C8]*) 

For a $ in NLsp we define $a = (l/S2) $(x/6) where 6 is a given parameter. We 
take as our approximation to f the function f h defined by 

fh(4 t)= c $&-x($7 t))f(x(@, t), t) h2. 
jhed’ 

In the vortex method this type of approximation is used to approximate the vor- 
ticity. (In some versions of the vortex method, however, the function $ is not 
chosen to be in MLsp.) An interpretation of (1.7), due to Chorin [ 121, is that we are 
approximating f(x, t) by a sum of “blobs” of common shape $a with strength 
f(x( j/z, t), t) h* located at the points x( jh, t). We also mention that such an inter- 
polation is nearly identical to kernel estimation as discussed by Monaghan and 
Cingold [21] and Monaghan [30]. An interesting observation due to Monaghan 
[30] is that kernel estimation and hence “blob” approximation can be viewed as a 
generalization of more standard approximation techniques, i.e., polynomial or 
Fourier approximation. 

Rather than give a proof of convergence for this scheme, we give a brief descrip- 
tion of the ideas behind the proof. (For a proof see [ 11.) The proof is based on 
techniques that are used in the analysis of the vortex method [3,5,7, 17,231. 
However, the velocity field is given in this problem rather than determined as part 
of the solution, so the analysis is simpler. 

There are two basic estimates to make in order to obtain a convergence proof. 
The first is a consistency, or accuracy, estimate of the approximation (1.7) to 
f(x, t). The second is a stability estimate, in essence an estimate of the behavior of 
the approximation (1.7) when its calculated components (in this case the x(jh, t)‘s) 
are perturbed. We will use the letter C to denote a generic constant. It’s depen 
upon components of the estimate, if important, will be explicitly mentioned. 
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Fix an x’ in R2 and a time T. For the consistency estimate, we assume that the 
particle trajectories x(jh, t) are computed exactly and estimate 

f(x’, t) -fh(X’, t) = f(x’, t) - c $s(x’ - x( jk t)) f(x( jk t), t) h2. 
jhenh 

for all t, 0 ,< t < T. We estimate this expression by adding and subtracting 
fs = I,+* *f, and estimating each term in 

{f(x’, t)-fs(x’, t,> + {MC t)- c tis(x’-x($, t))f(xw% t), t) h2} (1.8) 
jhc.Qh 

separately. 
The first term, f - f6, represents the error introduced in approximating the 

function f by its mollification with $s. Since the Fourier transform changes con- 
volution into products, this term is estimated using Fourier analysis. Denoting the 
Fourier transform of f(x) by f(w), and using the fact that max,, R2 (g(x)\ < 
l I&o)1 dco, we have 

G R2 I s f (w)l II- &&4l da 
The conditions (i), (ii), and (iv) on the function $ imply that 

I1 - &&)I ,< ap lolP 

where the constant is independent of o and 6. This last inequality reveals in part 
why $ is an approximate delta function; it’s Fourier transform closely approximates 
the Fourier transform of the delta function. Using this inequality and assuming that 
f decays sufficiently fast we find 

If(x’, t) - fd(X’, t)l G CP. (1.9) 

To estimate the second term in (LS), we first change variables in the convolution 
using the flow map X(CI, t) defined by the solution to (1.3). The velocity field is 
incompressible so that the Jacobian of this flow map is identically one. Thus the 
second term in (1.8) can be expressed as 

$&'---x(~, t))f(x(~, 11, t)da- c $dx'-4.9, t))f(x@, WV2. 
jhsQh 

As Cottet [17] recognized, this difference is the error involved in using the 
trapezoidal rule for approximating the integral of the function 

gw, a) = Icls(x’ - 4% t)) &t-(X(% t), t) (1.10) 



VORTEX METHOD FOR FLOW PROBLEMS 423 

with respect to a. The trapezoidal rule is normally considered to be accurate to 
order h2, however, by using the Poisson summation formula and the fact that S is 
of compact support, one can show [3] that the error for the trapezoidal rule 
applied to the function g(x’, E) has a bound of the form 

By finding L1 estimates for the derivatives of the function (1.10) and using (I.11 j 
one obtains the estimate 

@6(X’ --X(4 t)) f(X(a, t), t) dM - c 
jheD* 

$dx’ -x( jh, t)) f(x( jh, t), t) h2 d C 6k. 

(1.12) 

What limits the size of k is the smoothness of the flow and the smoothness of the 
functions f and $, i.e., the number of derivatives of g(x’, a) in L1. In our use of this 
estimate we assume that the smoothness of the function $ is the limiting factor and 
so take k = L where L is that of ML,p. We remark that the initial placement of the 
computational points in Qh is intimately related to the accuracy estimate given 
above. However, one need not consider only rectangular distributions of initial 
computational points. In [3], other initial distributions are discussed. (Non-rec- 
tangular distributions may be useful for constructing methods which preserve scme 
special symmetry of a given problem.) 

The estimates (1.9) and (1.12) hold uniformly for x’ E R* and 0 d t < 2’ so that we 
have 

max f(x’, t) - c 
XERZ 

$s(x’ -x( jh, t))f(x( jh, t), t) h2 <C P+ 
jhe.& 

j . ( 

where the constant depends only on T, properties of $, and bounds for a finite 
number of derivatives of the function f and velocity field II. 

The second estimate for the convergence proof is an estimate of the stability of 
the approximation (1.7). This is an estimate of the error introduced in (1.7) by 
using approximate solutions of (1.5). Since (1.6) can be solved exactly, 
f(x( jh, t), t) =fO( jh), we do not estimate the effects of using approximate solutions 
of (1.6) in (1.7). However, in more general circumstances, i.e., when there are source 
terms, this latter effect cannot be neglected. 

Define the discrete L* norm for functions defined on Slh by /(qh = 
(Cjh.ah Wh)l h 1 2 2 li2. Assume that the perturbed solutions of (1,5), which we 
denote by a( jh, t), satisfy 

IMjh, t) - x(jh, t)ll h <ha 
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for all O,< f,< T. Then by using the mean value theorem, Taylor’s theorem, and 
bounds for the derivatives of (1.10) up to time Tone obtains an estimate, 

for O,< t d T. The requirement (1.14) reveals the fact that WC arc not able to get 
estimates for all perturbations of the trajectories; only for suflicicntly small pertur- 
bations. For the details of this estimate see [I]. 

The convergence of (1.7) to the solution of (1.1) follows easily from the con- 
sistency and stability estimates (1.13) and (I .15). We have 

THEOREM 1. Assume the celocity jield u and the function f are suflikiently smooth 
for 0 d t < T. Assume that the support of the initial function f. is contained in a houn- 
ded set Q and that t/(x) is in M1.7p,for some p > 0 und I, > 3. !f h is sufficiently smull, 
ii = h9 for q < 1, and if Ili(ih, t) -x( ih, t)llh < Ch” where s > q + 1 then we bane for 
0 < t < T and any bounded set i?, 

max Ilf”(x, t) - f(x, t)/(,,~(~) < C(hP9+ h’,(’ -9J + hJmY) (1.16) 
O<r<7 

where 

f”k [I= c $A-z.(jh, t))f(x(jh, t), t)h2 
jhc-Rh 

and a( jh, I) is a computed solution to (1.5). The ussumptions on p, q. L, and s imply 
that us h -+ 0 tile right-hand side of (1.16) tends to zero. Here the constant depends on 
p, L, 17, Q, and a finite number of dericatices of the velocity und the function f 

Proof The proof follows easily from the triangle inequality. We have 

f”(x, I)-./(& 1)‘(7”(.? +PYx, I,] + {.P(X: l) -fk f,). (1.17) 

The first term of (1.17) is estimated using the stability estimate (1.15), and the 
second term using the consistency estimate (1.13). Thus 

Il.Pk 1) -f‘k [)I1 /.2(R) <Cb- ’ (Il(ih. t)-x(ih, t)ll,,+C 

< C(h.‘- ’ + &‘q + hL(’ 4)). 

WC note that the trajectories I(jh, t) riced to be computed with increasing 
accuracy as h + 0 to assure convergence. This is not an unreasonable requirement. 
We expect that the errors committed in the calculation of .?( jh, t) will be largely in 
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the numerical solution of the ordinary differential equations (1.5) and therefore 
uniformly of order (At)’ for some I> 1. The requirement that 

jj.if(ih. t) - x(ih, f)jl,, < Ch” 

implies that WC need (dt)‘d C’h” or (dt)‘/h’d C’ for some C’>, C. Thus, this 
requirement is very similar to the stability requirement for explicit finite difference 
schemes for the approximation of solutions of hyperbolic equations. 

In summary, a numerical method for approximating the solution to (1.1) and 
(1.2) consists of solving the ordinary differential equations (1.5) and (1.6). We con- 
struct an approximation of the solution at points other than x(jh? rj using the 
approximation scheme (1.7). The consistency and stability estimates of the 
approximation can be combined to establish the convergence of this approximation 
to the exact solution. 

We will use a technique similar to that described above for the construction of 
approximate solutions of the equations for a fluid of variable density. In particular. 
our approximation will consist of computing the trajectories of a finite number of 
fluid particles and the values of the flow quantities (density, vorticity, etc.) 
associated with them. In our approximation it will be necessary to find 
approximations, based on this computed information, to derivative and integral 
operators applied to the flow quantities. We will construct the approximations by 
applying the particular operators to approximations of the form (1.7). For example, 
we would USC 

,fl:(x, 1) = c (‘It/j (x--x( $2, t)) .f‘(x( $7, t). t) h’ ,ht12” 2x 

as an approximation to the x derivative of I: 

2. EQUATIONS OF MOTION 

In this section WC present the equations which we use to describe the motion of 
an ideal inviscid incompressible fluid with small density variations. 

The equations of motion of an ideal inviscid incompressible fluid are 

l?p 
z-tu.gradp=O 

-7 
z+u-gradu= -- grad p + F 

P 

(2.1 ) 

(2.2) 

(2.3) div u = 0. 
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The initial conditions are 

P(4 )‘9 0) = P&9 VI, N-G y, 0) = u,(x, v). 

Here p is the density, u = (ur, a>) is the velocity, P is the pressure, and F = (F,, F*) 
is the external force. We assume that the force F is conservative, i.c., curl F = 0. For 
a derivation see [ 15, 261. 

If the variations in density are small WC can make the Boussinesq approximation 
[34, 361 to (2.1)-(2.3). Consider the following steady solution to Eqs. (2.1) (2.3): 

27(x, y, t) = 0 

/2x. Y, t) = PC 

with P chosen so that 

grad P = /),F 

where p, is a constant. 
Define p‘, P’, and u’ by 

pl = p - p, P’= P-P, u’=u-u. 

WC substitute these expressions into (2.1)-(2.3) and find, after some simplification, 

g + II’. grad p' = 0 (2.4) , 

grad P’ p’ 

=--+FF PC ‘ 
(2.5) 

div II’ = 0 (2.6) 

with initial conditions 

P'CX, L'T 01 =pb(x, VI, u'k Y, 0) = u,,(x, Y). 

For small variations in the density about the state pc, p’4p,, WC make the 
Boussinesq approximation, 

Thus (2.5) becomes 

*+L,. 
PC 

(2.7) 

-7 ’ 
;+u’.grad u’=---- grad P’+d F. 

, PC PC 
(2.8) 
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For the sake of simplicity we will drop the primes and refer to u’, p//p,, and P’ in 
(2.4).-(2.8) as the velocity, density, and pressure, respectively. In this notation the 
equations now become 

(2.9) 

- 
grad P 

z+u.gradu=- + pF 
PC 

div u = 0 (2.11) 

P(.C y: 0) = po(x, y), u(x, 4’, 0) = u,(x, J). 

Equations (2.9) (2.11) are the equations that WC shall be using. 
It is convenient for numerical work to put (2.9)-(2.11 ) into a vorticity-stream 

form. Let w  be the vorticity, o = curl(u), and let YJ be the stream function. Ther: 
these equations can be written as 

$+u.grad(o=curl(pF) 

A Yj = - (!I, u, = Y,., u2= -Y, (2.!4,! 

where A is the Laplace operator. If we use the fact that G= (1/2x) log(r) is the 
Green’s function for A. and r = (x’ + Y>)‘:~, WC find 

Y= -G*o 

where * represents convolution. Thus, if we use (2.14). we obtain the following 
expression for the velocity in terms of the vorticity; 

dG 2G 
u, = --,*cd, 242 = ,*w 

CL’ CX 

or 

u=K*w (2.15) 

where K = ( 1/27rr2)( - J, x). 
We mention that the pressure P does not occur in Eqs. (2.12)-(2.15). This is a 

result of using the vorticity formulation and the Boussinesq approximation. The 
elimination of the pressure from the equations greatly simplifies our computational 
task and is our primary motivation for using this approximation. 
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Equation (2.13) expresses the fact that in a fluid of variable density the vorticity 
grows where there are density gradients. To calculate the effect of this term we need 
to compute density derivatives. One method is to find an approximation to the den- 
sity derivatives by numerically solving (2.12) and then differentiating the resulting 
solution. This was tried and found to be somewhat unsatisfactory. Another 
approach is to find an equation of evolution for the density derivatives and solve 
that equation, i.e., treat the density derivatives as the primary variables. This latter 
approach is the one which we use here. 

If we make the assumption that the support of the initial density distribution is 
contained in a bounded set, then we can express (2.12) in the following equivalent 
form: 

at + u. grad px = - ulxpx - u2x~y 

ap, dt + u. grad py = - ulypx - u2u~v 

(2.16) 

(2.17) 

P = G.x*~x + G,*py (2.18) 

Pxb, YT 0) = POX(X> u), P&G Y, 0) = POJX, Y). 

Here px and pY are the derivatives of the density and G= (l/271) log(r), 
r = (x*-t y2)l12. Equation (2.16) is obtained by differentiating Eq. (2.12) with 
respect to x and using the condition that div u = 0. Equation (2.17) is obtained 
similarly. Equation (2.18) is derived froim Poisson’s formula [25] and integration 
by parts, 

p = G*Ap = G,*px + G,*p,. 

We use (2.18) to reconstruct the density from its gradients because it has an easily 
implementable numerical analogue. Our numerical method will be based on 
approximations to the solutions of (2.13)-(2.15) and (2.16)-(2.18). 

To demonstrate the equivalence of (2.12) and (2.16)(2.18); if u and p are suf- 
ficiently smooth, and div u = 0, then it is easily seen that any solution of (2.12) is 
also a solution of (2.16)-(2.18). The fact that a sufficiently smooth solution of 
(2.16)-(2.18) is a solution of (2.12) is the content of the following theorem. 

THEOREM 2. Assume that for any time t, 0 < t < T, u and its derivatives are con- 
tinuous and bounded for x E R2 and div u = 0. Also assume p, and pY have compact 
support and are twice continuously differentiable (in both x and t) solutions of (2.16) 
and (2.17). If we de$ne p by 

p = G,*Px + G,*& (2.19) 
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where G is the fundamental solution of Laplace’s equation, then 

$+ugradp=O and aP - dP - 
~=Pn s=Py. 

The equivalence of these equations is most likely true under less restrictive 
assumptions, but such a result is not needed for our work, so we do not pursue the 
matter. To prove the theorem we need the following lemma: 

LEMMA 1.1. Under the hypothesis of Theorem 2 we have 

(PJ, = (&Jr 

Proof. If we differentiate (2.16) with respect to y and then subtract from it 
Eq. (2.17) differentiated with respect to x we find, after some simplification through 
the use of the condition div u = 0 and equality of cross partials, that the quantity 
G = (pX)g - (p4’)X satisfies the equation 

z+u-gradd=O (2.203 

with initial data 

@‘(x3 Y, 0) =po,- Po,,=O. 

Using the fact that 6 is a C’ solution of (2.20) with vanishing initial data, one can 
show, using energy estimates [IS], that ii, = 0 for all t, 0 < t < T. 

This completes the proof. We now prove Theorem 2. 

Proof. Let p be given by (2.19). We first show that ap/ax= p,. Using 
integration by parts and equality of cross partials, we find 

f$ = (G,*P, + G,*&L 

= G*(Px)xx + G*(&),. 

If we use Lemma 1.1 and Poisson’s formula, then we have 

= G*(DxLx + G*&), 

=p,. 

Similarly we have that dp/ay = pY. 
Assume (T(x, y) is a solution of (2.12) with initial data Q~(x, y) = po(x, y). Then 

o, and 6, satisfy (2.16) and (2.17), respectively, with initial data given by the 
derivatives of pO. By assumption, p, and jjY and hence ap/ax and ap/ay also satisfy 

581/61/3-6 
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(2.16) and (2.17). From the uniqueness of solutions to Eqs. (2.16) and (2.17), we 
conclude that cX = dp/ax and oY = @lay. Thus 0 = p + c, where c is a constant. In 
particular we find that p of (2.19) satisfies the same equation as B, namely, (2.12). 
This completes the proof. 

3. DISCRETIZATION OF THE EQUATIONS OF MOTION 

In this section we describe an approximation scheme for Eqs. (2.13)-(2.18). Our 
technique is to write the equations in Lagrangian form and then discretize them. 
Unlike the model problem in which the velocity field that moves the fluid quantities 
is given, in these equations the velocity field must be calculated as part of the 
solution. However, the numerical procedure that forms the basis of the vortex 
method is applicable and will be used to determine the velocity field. In Lagrangian 
form Eqs. (2.13)-(2.18) are 

dx(a, t) - = u(x(a, t), t) 
dt 

(3.2) 

(3.3) 

(3.4) 

ddx(a, t), t) 
dt = ~&(a, t), t) F2 - P,(x@, t), t) F, 

dpx(x(~, t), t) 
dt = -UdX(% t), t) PA44 t), t) - U2x(X(& t), t) p,(x(a, t), t) 

&y(x@, t),t) 
dt = - ~Iy(xb~ t), t) P,(X(% t), t) - u2y(x(a, t), t) PyM% t), t) 

p(x(a, t), t) = G,*P&(~, t), t) + G,*P,(x(T t), f) (3.5) 

with initial conditions 

x(cI, 0) = a, 44% 01, 0) = WI(a) 

P,(X(% 01, 0) = PO,(~), Py(X(% O),O) = Po,(@J. 

Here a = (cI~, Q) E R2, u is defined by (2.15), and G is the fundamental solution of 
Laplace’s equation. The solution to (3.1), ~(a, t), is the trajectory of a fluid particle 
which at time t = 0 is located at the point a. Equations (3.2) and (3.3)(3.4) 
describe the evolution of the vorticity and the density derivatives along the particle 
trajectory ~(a, t). 

Assume the support of oo, pa,, and pO, are contained in some bounded set 0. Let 
Ah denote the set of nodes of a grid of mesh width h, and define Oh as the intersec- 
tion of Q with ,4h. Let IJ be in ML,p, where ML,J’ is defined as in Section 1. We will 
approximate the solution to (3.1)-(3.5) by solving approximations to these 
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equations for all points which are initially in Qh. For notational simplicity we 
denote by xj(t) the trajectory starting at jh, i.e., xi(t) = x( jh, t). Using this notation 
and also using w  to denote computed quantities, the method consists of solving the 
equations 

d%(t) 
-- = iih(jzj( t), t) 

dt 

with initial conditions 

iTJO) = jh, c5(Zj(0), 0) = o,(jh) 

P"x(TjCo)~o) = h,Uh), Py(zj(o)3 0) = h,(jh) 

for all points jh E Oh. The velocity iih(Zj( t), t) is computed by 

iih(.Zj(t), t )= C (K*$,)(Zj(t)-Zi(t)) 6(2i(t), t )  h2 

iheSZ* 

and the derivatives of the velocity field in (3.8) and (3.9) are computed by 

ii~(~j( t ) ,  t )  = C 

ihad 

qqt), t)= c 

ihE& 

The density is approximated by 

PC& t)= C (G.x*$,)(x-gi(t)) bx(zi(t), t) h2 
ihE& 

+ ,hFQh (G,*$s)(x --%(t)) &O,(t), t) h2. 

(3.4) 

(3.7) 

(3.8) 

(3.9) 

(3,10) 

(3.11) 

(3.12) 

(3.13) 

We remark that the expression for the velocity u is obtained, as in the vortex 
method, by applying the kernel K to the approximation of the vorticity given by 

&,“(x, t) = y& q/8(X -ai( cqzqt), t) h2. 
ihE@ 
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We also note that the approximations to the velocity derivatives given by (3.11) 
and (3.12) are obtained by differentiating the approximation to the velocity (3.10). 
The density approximation (3.13) is obtained by using the approximations to the 
density derivatives 

in (3.5). 
For functions $ which depend only on r, the convolution of the kernels K and G 

with Il/s can be computed explicitly. (See [S].) 
The accuracy of these schemes is dependent upon the initial grid spacing h, the 

smoothing parameter 6, and the functions $. Error estimates for the approximation 
scheme (3.6)-(3.13) given in [l] can be used to select the parameters. 

As in the model problem, the initial points need not be the nodes of a rectangular 
grid. If one does not use a rectangular distribution of points, then the 
approximation scheme is essentially unchanged. However, in the approximations 
(3.1Oj43.13) the factor h2 should be replaced by a factor pi, where the pi are weight 
factors depending on the distribution of the computational points and accuracy 
considerations. (See [3].) 

4. TEST PROBLEM 

Given the force function 

F(x, y, t) = 2tF 3, ; 
( ) 

where,r2 = (x2 + y’), t is the time variable, and P is a constant, then a C’ solution 
to (2.12~(2.15) with initial conditions 

r2 ’ 
P(X, ho)=;-; 1-y , ( > r2 6 a 

a 
=ig> 

45 Y, 0) = 0 

r2 > a 
(4.1) 

is 

PC4 YY t) = P(X, YY 0) 

-Y&9 YY 0) 
%(X9 Y)’ 3 

Ft2 
5 r2 ,< a u,(x, Y)= r2 

XPGG Y, 0) FL2 
> r2<a 

= -y(a/16) Ftz 
r2 > cx 

x(416) i?’ 

r2 ’ 
ZZ 

r* ’ 
r2 > a. 

(4.2) 
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The smoothness of the density follows from the definition of p(x, y, 0). For 
r2 6 a, the term p(x, y, 0) occurring in (4.2) is a polynomial in Y’ with no constant 
term, so p(x, y, O)/r2 is a polynomial in ?. Thus the velocities are infinitely differen- 
tiable for r2 < LX The non-smoothness of the velocity occurs at the points for which 
r2 = ct. 

The Row is a radially symmetric body of fluid rotating about the origin. What 
makes the flow interesting is that fluid particles at different distances from the 
origin move at different rates, i.e., there is local shear. Typically, flows with shear 
present the greatest challenge to Lagrangian schemes [3lJ and we therefore believe 
that this problem is a non-trivial test of the method. 

The parameters to be chosen are h, the initial mesh width, 6, the smoothing 
parameter, and the function $ used in (3.10)-(3.13). We allowed h to take on three 
values, h = 0.0886, h = 0.0728, and h = 0.0626, corresponding to 200, 300, and 400 
points, respectively. The error estimates of the convergence results given in [l] 
suggest that we should choose 6 = hY for some 4 < 1. We therefore let 6 = hq for 
4 = 0.95, 4 = 0.85, and 4 = 0.75. The functions $ used in the approximations (3.10)-- 
(3.13) were chosen to be in A@’ and one of 

(p=2,L=co) *(r)=$ 

(p=4, L=co) 

(p=6, L=co) ,)(I,=; (,,-r2+! ,-~3i~4+e-r2-z), (4.5) 

These functions are suggested by Beale and Majda in [IS]. The integration of t 
ordinary differential equations (3.6)-( 3.9) was performed using fourth-order 
Runge-Kutta. The time step, dr = 0.1, was chosen sufficiently small so that a 
decrease in the time step did not significantly effect the results. 

We measured the relative error in the first component of the velocity. This error 
is computed by 

where u”: is the computed velocity, u1 is the exact velocity, and ai are the com- 
puted point positions. 

We found that for all values of the parameters tried the errors grew at a rate 
which was independent of the number of time steps, i.e., the method was stable. We 
present in Tables I and II the errors for the various choices of the parameters at 
times t = 1.0 and t = 1.6. These times correspond to a maximum point rotation of 
n/4 and 2n radians, respectively. 
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TABLE I 

Errors in Velocity (%) at Time t = 1.0 

p=2 p=4 p=6 

6 = ho.95 

6 = ho.85 

,j = ho.75 

r, = 0.0886 

5.3 0.82 
8.3 1.8 

12.0 3.9 

h = 0.0723 

3.1 0.40 
6.1 1.0 
9.8 2.4 

h = 0.0628 

2.8 0.24 
4.8 0.67 
8.1 1.7 

0.25 
0.32 
1.0 

0.14 
0.12 
0.49 

0.10 
0.061 
0.29 

TABLE II 

Errors in Velocity (%) at Time f= 1.6 

p=2 p=4 p=6 

h = 0.0886 

6 = ho.95 5.7 3.1 5:4 
6 = ho.85 8.3 2.1 3.5 
6 = ho.75 12.0 3.9 2.1 

h = 0.0723 

6 = ho.95 3.9 2.4 3.7 
,!j = ho.85 6.0 1.5 2.1 
6 = ho.75 9.7 2.3 1.1 

h = 0.0628 

6 = ho.95 3.0 1.6 2.7 
6 d ho.85 4.8 1.0 1.4 
6 = ho.75 8.0 1.6 0.78 
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From these results we see that using higher-order blob functions (p 3 2) is 
beneficial. This effect can be quite substantial, as one sees by comparing the results 
for different blob functions at time t = 1.6 with h = 0.0626. For a blob function with 
p = 2 the error is 8 % while for a function with p = 6 the error is 0.7X %. The 
theoretical estimates given in [l] support this result. We also see that there is a 
pronounced effect on the error when the relations between h and 6 are varied. 
However, the effect is not uniform with respect to time or blob function. We note 
that by choosing a large value of 6 with respect to h the growth of error in time is 
diminished. This is most clearly seen with the higher-order functions, where it 
appears that more smoothing is necessary to preserve accuracy. Bn experiments on 
the vortex method [S, 321 similar conclusions about the relative size of h an 
have been obtained. 

Since the effect of the choice of the relative size of h and 6 on the error is unclear, 
it is difficult to abstract from these results what the correct relation should be. To 
overcome this difficulty we have devised an empirical procedure for determining it. 

This procedure is described and tested in the next section. 

5. APPLICATION TO A 2-D THERMAL 

A 2-D thermal is that object which is initially a cylindrical body of buoyant fluid 
having its axis of symmetry perpendicular to the gravitational force and which has 
moved under the effect of gravity. We model the motion of a line thermal by com- 
puting the solution to Eqs. (2.12~(2.14) with initial data of the form 

Pok Y) = Pl for rf? 

=O for r>J 
(5.1) 

%(X, Y I= 0. (5.2) 

Here r = (x2 + y’)r’* and p, is a constant such that p1 6 6). For the external force, 
we used F = -(O, g) where g is a constant. In all of our calculations we us 
p1 = -0.1, g= 10.0, and ?=0.5. 

Due to the presence of gravity, the circular region of lighter fluid will rise in time. 
The problem is to calculate the motion of this lighter fluid. For a more detailed 
description of line thermals and of theoretical and experimental studies of their 
motion see [20, 33, 35,361. An earlier numerical study of the motion of a 2 
mal is presented in [29]. Our interest in this problem is to gain an under 
of the behavior of the method when it is applied to more realistic problems, i.e., 
problems closer to those which our numerical method is intended to be useful for 

The problem we are solving has singular initial data. This presents di~c~ties 
since the numerical scheme as described in Section 3 and tested in Section 4 is 
on assumptions of continuous density distributions. However, the general approach 
that we take, that of calculating the evolution of the vorticity and the density 
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gradients, suggests a reasonable discretization and we are able to formulate a 
numerical scheme. 

To construct a numerical scheme we need to choose an initial distribution for the 
computational points and the initial conditions for the equations describing the 
evolution of the vorticity and the density derivatives. The initial points we used 
where those uniformly distributed along the interface ((x, y) 1 x2 + y* = ?“}. This is 
a reasonable choice because the density derivatives, and hence the vorticity, of the 
solution to (2.12)-(2.14) will be non-zero only on this set. Thus, letting cl++ denote 
the computational points we used 

ak = f(cos(kh), sin(&)) for k = l,..., N 

where 

Using this choice of computational points we must determine the weights occur- 
ring in the approximation for the velocity (3.10) and density (3.13). (Since the 
initial points are not on a rectangular grid, the factor h* is not appropriate.) We 
must also determine appropriate initial values for the density and vorticity. As the 
important components in the approximations (3.10)(3.13) are the products of the 
values of the vorticity times the weight factors and density derivatives times weight 
factors, it is convenient in this problem to consider these products as single quan- 
tities. The differential equations describing the evolution of the voriticity and the 
density derivatives can be transformed (upon multiplication by the weight factors) 
into equations for these combined quantities. For the initial conditions for the 
products involving the density derivatives we used 

Px(~~> O) Pk = b%y(ak)Pk = Y cos(ak) 

P”y(ak? 0) pk = bb,(ak) Pk = y sin(ak). 

Here pk is the weight factor used in place of h2 in the approximations (3.10)-(3.13). 
The constant y is chosen so that when we construct the density using (3.13) the 
total mass of the lighter fluid is identical to the mass of the lighter fluid in the initial 
condition( 5.1). Specifically, we choose y so that 

+y jfl G,(~-ak)~~~(ak)dx 

= --p17rP. 



VORTEX METHOD FOR FLOW PROBLEMS 439 

For the initial conditions of the products involving the vortieity we used 

G(@,, 0) pk = &)(a,) pk = 0 for k = I,..., A? 

There is a second technique which would lead one to a numerical scheme for this 
problem. This consists of modifying the initial conditions (5.1)-(5.2) so that the 
procedure described in Section 3 will work. Specifically, one would first smooth t 
initial data, i.e., change the jump discontinuity into a smoothly varying transition, 
and then approximate the solution of this smoothed problem. The usefulness of 
such an approach has been demonstrated in conjunction with the Fourier method 
[28]. A disadvantage of using this technique is that it uses more computational 
points than that described above. However, the possibility of using the latter 
approach demonstrates an attractive feature of our method. In particular, when one 
smooths out the interface (which entails thickening it) there is a natural d 
cretization of the smoothed problem that is consistent with our numerical meth 
This feature is not present in vortex sheet or integral equation approaches. Gom- 
putations involving this second technique to calculate the motion of a thermal are 
currently being carried out. 

The other parameters that need to be selected are the function $ and the 
parameter 6. We chose the function $ used in (3.10) and (3.11) to be 

where r = (x2 i- y2)l/* 
The last parameter to be specified is the parameter 6. We found that the proper 

choice of 6 was a critical factor in obtaining consistent numerical results. Our first, 
and unsuccessful, technique was to let 6 = hq for some q < 1. With these choices we 
then solved the equations (3.6)-(3.9) using a fourth-order Runge-Kutta scheme 
with a step size of At = 0.1. We monitored the quality of the computation by com- 
puting the mass of the thermal at each time step. Typically, for the values of q that 
we tried, q = 0.95, q = 0.75, and q = 0.5, it was found that there was a time rY 
depending on q, such that the solution failed to conserve mass for t 3 ??. Further- 
more, decreasing h (increasing the number of computational points) did not 
improve the results. Sample results for the calculations for 6 = ho.75 are shown in 
Figs. 6.1(a)-(c). In these figures the interface position at t = 3.0 for different values 
of h is shown. We see that as h -+ 0 the results are not consistent. 

We believe the inconsistency of the results is due to the manner in which we are 
approaching the solution of Eqs. (2.9)-(2.11) with the numerical approximation. 
We expect that as h -+ 0 and 6 -+ 0 the numerical approximation will approach the 
solution. However, there is no reason a priori to assume that approaching the limit 
h = 0 and 6 =0 using the relation 6 = hq is appropriate for this problem. The 
solutions were numerically unstable and we concluded that for a given value of h, 
the smoothing parameter S determined by the relation 6 = hq was not large enough 
to suppress the instability. 
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b- 

Fig. 6.1. Interface position at time t= 3.0 with 6 =/zO.‘~ and h = x/N. N is 200, 300, and 400 in 
(a)-(c), respectively. 

To overcome the difficulty in choosing the proper relation between h and 6 we 
used the following procedure. We fixed a value of 6, say, 6,) and then determined 
an hl, so that for all h < hl the computational results did not significantly change 
for 0 < t < i? (T is selected arbitrarily.) We then selected another 6, say, 6,, with 
6, < 6,. Again, we found an h, such that for h <h, the results did not significantly 
change over 0~ t < 7: We continued in this manner and thus constructed a 
sequence h, &I, (b, &A..., (hi, Sj). Our hope was that as the sequence 
(hi, SJ --t (0,O) the corresponding numerical solutions approach the solutions of 
(2.9)-(2.11) with data (5.1)-(5.2). One can view the above procedure as empiricially 
determining the appropriate approach to the limit. 

This procedure worked well. Our assessment of convergence was obtained by 
considering three features of the computation. 

(1) The conservation of mass of the lighter fluid for 0 < t < ? 

(2) The convergence of the length of the interface. 

(3) The convergence of the position of the interface. 

As an example of the convergence behavior, the results for 6 = 0.07 are presented 
in Table III and Figs. 6.2(a)-(c). Table III shows the variation with respect to h at 
time T= 3.0 of the mass and of the arc length. Figures 6.2(a)-(c) show the position 
of the interface at time F= 3.0 as h is varied. We mention that the time step, 
At = 0.1, was chosen small enough so that it had an insignificant effect on the 
results. 
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TABLE III 

Fixed Delta Convergence at t = 3.0 

N Mass Arc length 

150 7.641 x lo-* 9.768 
250 7.855 x 1O-2 9.824 
350 7.854 x 10-Z 9.839 
450 7.854 x 10-2 9.846 

Note. 6 = 0.07. Initial mass =7X539 x 10e2. 

We computed the solution to the above problem for several different values of 6. 
We limited ourselves to 6 20.04 because for smaller 6’s the number of points 
necessary to obtain convergence was very large (~800). In Fig. 6.3 we plot the 
position of the interface for times t = 0.0 to t = 3.0 and for 6 = 0.1. (These figures 
represent the converged solution with respect to the parameter h.) ft was observed 
that the computed solutions for smaller values of 6 were similar to the solution 
presented in Fig. 6.3. The overall shape and the distance traveled were essentially 
independent of the size of 6 used. This demonstrates an attractive feature of the 
method, specifically that one need not of 0-o319  T Tj088  Tc 0.3066  9  Tw epTj s3.25 0onoTw (0-o319  To29.7003 0  j088   9  27 0  TDonoTw (of ) Tj0629  T63002c3nro9n35io862 9  6w ep Twro9n35s.(006 e06293  Tr -06  Tr -029256g9862 9  6w ep 2Tw (method, ) t0o ) Tj0  .Tj697 exception03monstrates ) Tethod, not because the numerical 

FIG. 6.2. Interface position at time t = 3.0 with 6 = 0.07 and !I = x/N. N is 200, 300, and 400 in 
(a)-(c), respectively. 
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FIG. 6.3. Interface as a function of time. 6 = 0.1. 

method requires more computational points, i.e., more computational labor, the 
smaller the value of 6. The change in the numerical solutions with 6 was in the 
small-scale features of the solutions; notably in the eye of the curl. This aspect of 
the solutions can be seen in Figs. 6.4(a)-(f) in which the solutions for different 6’s at 
time t = 3.0 are presented. For a more revealing picture of the interface at small 6’s, 
we present in Fig. 6.5 the result at time t = 3.0 of the interface location for 6 = 0.04. 

As stated in the Introduction, we find evidence that the solution has a singularity 
in finite time. The evidence that suggests this is the behavior of the arc length of the 
interface and the magnitude of the vorticity of the solution in time. In Fig. 6.6 we 
plot the arc length versus time for the values of 6 tested. Up to time T= 1.0 the arc 
length is approximately constant. After that time the arc length grows at a rate 
which is approximately proportional to 6 - ‘lo5 Thus it appears that as 6 tends to . 
zero the length of the interface becomes infinite, and that this occurs around time 5?. 
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L.L.l.s.L.!.!.J I.[ IIIIIIII.IIIII >,.i 
e f 

FIG. 6.4. Interface position at time t = 3.0. 6 values 0.1 to 0.05 in increments of 0.01 For (a)-(f), 
respectively. 

FIG. 6.5. Interface position at t = 3.0. 6 = 0.04. 
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FIG. 6.6. Arc length as a function of time. 

The singularity of the solution is also evident in the magnitude of the vorticity. As 
the thermal evolved the vorticity became concentrated in the “eye” of the thermal. 
As 6 was reduced, the magnitude of this vorticity appeared to grow without bound. 
Specifically, we found that the maximum vorticity at time 3.0 is approximately 
described by the equation 

max[wl = A + BJek 

where k = 2.028 and A and I3 are two constants independent of 6. 
This behavior suggests that a singularity of the flow occurs at about time i? 

However, there are some aspects of the calculation that deserve further study. In 
particular, the validity of the approach to the singular solution (if it indeed exits) as 
the limit of our computed solutions as 6 -+ 0 remains to be studied. It also remains 
to be seen whether or not the computational results are the same if the limiting 
solution is obtained as the limit of solutions of thermals with thickened interfaces. 
We believe that this is the case, but it must be checked. 

6. CONCLUSIONS 

We have presented a numerical method for calculating the motion of an incom- 
pressible fluid of slightly varying density. The method is grid free and, in view of the 
method’s ability to resolve the roll-up of the 2-D thermal, is capable of representing 
very complicated fluid motion. Although the method gives “smoothed” 
approximations to the solutions of the fluid equations, this smoothing does not 
accumulate and contaminate the numerical approximation. It is this property that 
is the distinctive advantage of this method over finite difference methods. 
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As for the efficiency of our method, it requires O(n2) operations for each time 
step, where n is the number of computational points. Compared to grid techniques 
which usually require O(m) or O(m log m), where m is the number of grid points, 
the method presented here may seem to be inefficient. Such a conclusion is not 
necessarily valid since one typically needs many fewer computational points using 
our method than with grid techniques to resolve the tine-scale structures of the flow. 
We mention that the operation count of the method presented here may be reduced 
if one uses particle-grid techniques such as Cloud In Cell [I161 or its variants 
[2, 10, 11, 241. (For a review of particle-grid methods see [19].) Although using 
such algorithms leads to a loss of accuracy in the calculation, their use can reduce 
the amount of computational labor enormously. 

An aspect of the implementation of our method is the choice of the “blo 
function $ and the smoothing parameter 6. From the results presented in Section 4 
we conclude that for smooth problems using higher-order functions, $ in MLlp with 
p > 2, is likely to be beneficial. Also, letting the core parameter 6 = h4 for 0 < 4 < 1, 
where h is the initial mesh width, seems a proper choice. For non-smooth problems 
the results of Section 5 indicate that the proper relation between h and 6 is a crucial 
factor for obtaining consistent numerical results. Since there are no theoretical 
estimates that can be used to indicate what this relation might be, we recommend 
determining the relation between h and 6 by the empirical procedure described in 
Section 5. This procedure may also be of use for determining the proper relation of 
h and 6 in other vortex calculations, especially when the smoothness of the solution 
is not known. 

Possible future applications of the method include the study of the instabilities of 
continuously stratified fluids and the study of the roll-up of an interface separating 
two fluids of slightly different densities. 
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